
//
// ClusterSize.cpp : Determine the cluster size for a given volume
//
// Usage: Clustersize [volume]
//
// volume can be any of the drive letters(A-Z) with a root directory path (e.g. C:\)
//
// Examples:
// clustersize (returns cluster size of C:\)
// clustersize d:\ (returns cluster size of D:\)
//

#include <stdio.h>
#include <windows.h>

// Local functions
DWORD GetClusterSize(LPCWSTR pszVolume, LPDWORD pClusterSize, LPDWORD pSectorsPerCluster, LPDWORD pBytesPerSector);

int wmain(int argc, WCHAR* argv[])
{
 DWORD rc = ERROR_SUCCESS;
 DWORD ClusterSize = 0, SectorsPerCluster, BytesPerSector;
 LPCWSTR pVolume = L"C:\\";

 // if the user has picked another drive besides C:, just use that
 if(argc == 2)
 {
 // might be useful to do some parameter checking on the arguments
 // but for now we assume that we have something good
 pVolume = argv[1];
 }

 // be sure not to put up a popup for failed accesses
 SetErrorMode(SEM_FAILCRITICALERRORS);

 wprintf(L"Determining cluster size for volume %s\n", pVolume);

 // Get the actual cluster size
 rc = GetClusterSize(pVolume, &ClusterSize, &SectorsPerCluster, &BytesPerSector);

 // print out more information about the volume if possible
 switch(rc)
 {
 case ERROR_SUCCESS:
 wprintf(L"Volume(%s) ClusterSize(%u) SectorsPerCluster(%u) BytesPerSector(%u)\n",
 pVolume, ClusterSize, SectorsPerCluster, BytesPerSector);
 break;

 case ERROR_PATH_NOT_FOUND:
 wprintf(L"The system cannot find the path specified.\n");
 break;

 case ERROR_NOT_READY:
 wprintf(L"The device is not ready.\n");
 break;

 case ERROR_INVALID_PARAMETER:
 wprintf(L"The parameter is incorrect.\n");
 break;

 default:
 wprintf(L"Volume(%s) Error(%u)\n", pVolume, rc);
 break;
 }

 return ClusterSize;
}

/*
 * GetClusterSize
 *
 * Determine the cluster size for a given volume
 *
 * Parameters:
 * LPCWSTR pszVolume - name of volume (example C:\)
 * LPDWORD pClusterSize - returned size of cluster (in bytes)
 *
 * Return:
 * DWORD rc - Win32 error code (SUCCESS - ERROR_SUCCESS, ERROR - everything else)
 */
DWORD GetClusterSize(LPCWSTR pszVolume, LPDWORD pClusterSize, LPDWORD pSectorsPerCluster, LPDWORD pBytesPerSector)
{
 DWORD rc = ERROR_SUCCESS;

 if((pClusterSize != NULL) && (pSectorsPerCluster != NULL) && (pBytesPerSector != NULL))
 {
 DWORD FreeClusters, TotalClusters;
 BOOL bRet;

 // Use GetDiskFreeSpace to determine the cluster size.
 //
 // Do not trust the FreeClusters and TotalClusters since they
 // cannot go above 2GB in size
 //
 bRet = GetDiskFreeSpace(pszVolume, pSectorsPerCluster, pBytesPerSector, &FreeClusters,&TotalClusters);

 if(bRet == 0)
 {
 // something obviously went wrong with GetDiskFreeSpace
 rc = GetLastError();
 }
 else

 {
 // if the actual cluster size is requested, deliver it now
 if(pClusterSize != NULL)
 {
 // ClusterSize is going to be fairly small so we do not need to worry about multiplication overflow
 *pClusterSize = *pSectorsPerCluster * *pBytesPerSector;
 }
 }
 }
 else
 {
 rc = ERROR_INVALID_PARAMETER;
 }

 return(rc);
}

